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Correlation structure of the 9, statistic for chaotic quantum systems
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The existence of a formal analogy between quantum energy spectra and discrete time series has been
recently pointed out. When the energy level fluctuations are described by means of the J, statistic, it is found
that chaotic quantum systems are characterized by 1/f noise, while regular systems are characterized by 1/f2.
In order to investigate the correlation structure of the &, statistic, we study the gth-order height-height corre-
lation function C,(7), which measures the momentum of order ¢, i.e., the average gth power of the signal
change after a time delay 7. It is shown that this function has a logarithmic behavior for the spectra of chaotic
quantum systems, modeled by means of random matrix theory. On the other hand, since the power spectrum of
chaotic energy spectra considered as time series exhibit 1/f noise, we investigate whether the gth-order
height-height correlation function of other time series with 1/f noise exhibits the same properties. A time series
of this kind can be generated as a linear combination of cosine functions with arbitrary phases. We find that the

logarithmic behavior arises with great accuracy for time series generated with random phases.
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I. INTRODUCTION

The statistical study of energy level fluctuations is one of
the most important tools for understanding quantum chaos.
The pioneering work of Berry and Tabor [1], and Bohigas er
al. [2] showed that spectral fluctuations have universal sta-
tistical properties, which are different for quantum systems
with integrable or chaotic classical analogues [3]. In the first
case, the sequence of spacings between consecutive energy
levels constitutes a noncorrelated random sequence, whereas
systems with chaotic classical analogues are characterized by
strong level correlations well described by random matrix
theory (RMT). Therefore, a generic quantum system (with or
without a clear classical analogue) is usually said to be inte-
grable or chaotic when its statistical spectral properties coin-
cide with those of a noncorrelated sequence or those of ran-
dom matrix theory, respectively. A comprehensive review of
these features and later developments in this line can be
found in Refs. [4,5].

Recently, a different approach to the study of spectral
fluctuations has been proposed [6]. It was noted that there is
a formal similarity between the discrete spectrum of quan-
tum systems and a discrete time series. Considering the se-
quence of energy levels as a signal in which energy plays the
role of time, level fluctuations can be studied using tradi-
tional methods of time series analysis, especially regarding
the behavior of the power spectrum in Fourier space. Using
an appropriate statistic called &,, defined as the accumulated
departure of the spacing sequence from its mean value, it
was shown by numerical calculations in atomic nuclei and
paradigmatic random matrix ensembles that chaotic quantum
systems are characterized by 1/f noise, whereas integrable
quantum systems exhibit 1/f> noise [6]. As a consequence,
this behavior was conjectured to be a general property of all
chaotic or regular quantum systems. Some understanding of
this peculiar behavior can be achieved considering the exist-
ing analogy between the characteristic level repulsion of cha-
otic quantum systems and the antipersistent features of a
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time series characterized by 1/f noise, on the one hand [7],
and between the uncorrelated level fluctuations of integrable
quantum systems and uncorrelated displacements in Brown-
ian motion, on the other hand.

Following this line of work, analytical expressions for the
power spectrum of the §, statistic were derived from random
matrix theory and semiclassical theory [11], and the previ-
ously conjectured 1/f and 1/f types of noise were thus
theoretically confirmed for chaotic and regular quantum sys-
tems, respectively.

A natural question to ask is what happens in intermediate
situations between chaotic and regular motion. The transition
between these two extremes was studied using the Robnik
quantum billiard, in which it takes place very smoothly as
the billiard shape changes. Amazingly, it was found that the
power spectrum of J, exhibits a fractional power law behav-
ior, usually called 1/f* noise, through the whole transition,
with a smoothly changing from the extreme value a=1 in
the chaotic regime to @=2 in the regular one [12]. A similar
result was recently obtained for a coupled quartic oscillator
and a quantum top [13].

It is our purpose in this paper to get a deeper understand-
ing of the connection between the fluctuation properties of
quantum levels and time series. To this end, we go beyond
the comparison of their power spectra. By calculating the
gth-order height-height correlation function for higher order
moments, we study whether there is a multiscaling structure
in classical random matrix ensembles. We do not find such
scaling behavior, but a logarithmic correlation structure, and
we propose an heuristic expression which provides an accu-
rate description of the gth-order height-height correlation
function for all the spectral moments. We also investigate the
same function for some time series with 1/f noise, and we
compare it to the results for random matrix ensembles.

In Sec. II, we introduce the concepts of gth-order height-
height correlation function, self-affinity of a time series, and
emphasize the properties of the second moment for the par-
ticular case of 1/f noise. In Sec. III, we introduce the &,
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statistic and outline the properties of its power spectrum. In
Sec. IV, we present the calculations, explain how the
gth-order height-height correlation function is calculated,
and discuss the results. Section V is devoted to the compari-
son with time series which exhibit 1/f noise and are gener-
ated as linear combination of cosine functions. Finally, Sec.
VI contains a summary and the conclusions.

II. SELF-AFFINE TIME SERIES AND 1/F NOISE

Given a continuous time series X(7),f € R, the power
spectrum of the signal is defined as

P(w) = [X(w), (1)
where
X(w) = L— f ’ X(t)exp(- 2miwr) 2)
\N2mJ

is the Fourier transform of the signal. It is well known that
many phenomena in nature and social sciences can be char-
acterized by time series with power spectra of the form

Plw)=Cw™®, (3)

where C is a positive constant and a=1 (see, for example,
Refs. [14,10] and references therein). This frequency decom-
position entails that such a time series, generically known as
1/f* noise, has no characteristic time scale, and its correla-
tion time is comparable to the duration of the entire time
series. Moreover, it is quite customary to assume self-
affinity, i.e., that in addition to the previously mentioned
characteristics, a 1/f“ noise has a multiscaling structure in
all time scales [15].

For a continuous time series X(z), the so-called gth-order
height-height correlation function [16] (which we denote
gth-order correlation function, for the sake of simplicity), is
given by

T
C, (D) =(X(t) - X(t + 7)|7),= }im ZLTJ di|X(t+7) - X(1)]7.
—0o0 -7

(4)

In terms of the gth-order correlation function, multiscaling
means that

Cylr) o= 7, &)

where H, is a smooth function of g. The shape of H, deter-
mines the character of the scaling. When H, =H, for all g,
the scaling is said to be simple, because it is the same for all
momenta; fractional Brownian motion (FBM) is the paradig-
matic example of this behavior [8]. On the other hand, if H,
is not a constant function, one talks of nontrivial multiscal-
ing; a good example of this scaling behavior is proposed by
Mandelbrot [17]. It is noteworthy to comment that the statis-
tical properties of a random signal are fully determined by all
g=1,2,...,°0 momenta [18], and thus the study of C,(7) pro-
vides us a lot of information about the signal.

The power spectrum (1) is related to the second-order
correlation function as [19]
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Cy(7) = zf dw P(w)[1 - cos(w7)]. (6)
m™Jo

When the power spectrum is given by Eq. (3), this integral is
well defined for 1 <a<3, and C,(7) = 7*~!, as expected for a
self-affine time series.

Nevertheless, in spite of the usual scaling assumptions,
the power law (3) is not a necessary condition to have self-
affine time series. Actually, studying some statistical proper-
ties related to self-affinity, like the fractal dimension of the
signal, Greis and Greenside [10] have found systematic de-
viations from self-affinity in time series that exhibit 1/f“
noise when a # 2.

Moreover, for a=1, there also exist analytical arguments
showing that these time series are not self-affine. Since 1/f
noise characterizes the spectral fluctuations of chaotic quan-
tum systems, this case is very important. The relation be-
tween C,(7) and P(w) does not hold if a=1. In fact, the
integral appearing in the right-hand side (rhs) of Eq. (6) di-
verges. Moreover, it is not possible to avoid this problem by
redefining the correlation function; the divergence in the
second-order momentum is characteristic of 1/f noise
[20,21].

To overcome this difficulty, one usually introduces a dis-
crete time series by sampling the original signal with a char-
acteristic time Ar. (Note that time series are usually sampled,
because numerical calculations and experimental measure-
ments involve some sort of discretization.) The sampling de-
fines an upper frequency limit in the Fourier spectrum w,,,,
=241/ At, and thus, we can write

Cy(7) = % f " 4o P()[1 = cos(wr)], )
0

where the integral in the rhs is well defined for P(w) ™!
and leads to

C2(7)=2[7—Ci<2A_77)+]“ T+ln<2A—7tT)], 8)

where y=0.577 216 is the Euler constant, and Ci(x) is the
cosine integral function [22]. A good approximation for this
expression is

-
Cy(D~Inr, —>1. 9
A ~In7 o 9)

This result shows that a strict 1/f noise is not self-affine,
since at least the second-order correlation function does not
have a multiscaling behavior; the leading term is a logarithm
and not a power law. In Ref. [23], a similar result was ob-
tained by studying several mechanisms that give rise to times
series that exhibit 1/f noise.

Beyond the sampling of continuous time series involved
in numerical calculations or experiments, discrete time series
are important on their own. In our case, the discrete energy
spectrum of a quantum system is related to a discrete time
series; for this reason, it is worth it to translate the previous
expressions for discrete time series. Given a discrete and
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finite time series X(n), n=1,2,...,N, the power spectrum,
defined only in a finite set of frequencies w;=2mk/N with
k=1,2,...,N/2, is given by

P(wy) = [X(w), (10)

in terms of the discrete Fourier transform of the signal

N
o 1
X(wy) = o > X(n)exp(— iawyn). (11)

VIV p=1
For such a time series, the gth-order correlation function
is
Y
C,(n) =(|X(m) - X(m +n)|9),, = N > [X(m) = X(m +n)

m=1

q
s

(12)

where N’ is the number of points over which the moving
average is taken and satisfies that 1 <N'<N-n.

III. QUANTUM CHAOS AND TIME SERIES

It has been pointed out that energy level spectra have a
formal similarity with time series; this analogy is the basis of
all the results presented in Refs. [6,11,12]. In order to under-
stand this point, let us consider a physical system whose
Hamiltonian is self-adjoint, time independent, bounded from
below, and with discrete spectrum {E,,n e N}. Tt is well
known that its energy level density g(E)=2,5E—E,) can be
written as

8(E) =g(E) +g(E), (13)

where g(E) is a smooth function of the energy and g(E)
represents the rapidly fluctuating part [24]. For chaotic and
regular systems, the latter is universal to a large extent; it
only reflects the character of the underlying classical dynam-
ics, regardless of the system specificities [25]. Now, defining

E)H—l
Sn =f gle)de, (14)

—00

considering the order index n as a discrete time, and 9, as the
value of the fluctuation at time t=n, the sequence {8,} can be
treated as a time series. In general, it is convenient to define
0, to be independent of the ground state of the system, be-
cause in many experiments and numerical calculations only a
window of energy levels is available; therefore, if E; is the
first known energy level, the §, sequence can be defined as
follows

Eyp1
5n=f g(e)de. (15)

E,

The &, function can be alternatively defined as the fluctua-
tion of the excitation energy of the unfolded levels [6].
Certainly, there are some differences between &, and ac-
tual time series (that is, physical magnitudes evolving in
time); the most important is that in a quantum system the
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position of each energy level depends both on lower and
higher energy levels, and thus, &, as a time series depends on
the past as well on the future history. Nevertheless, in spite
of this and other peculiarities (see Ref. [6] for a complete
discussion), the analogy between an energy level spectrum
and a time series is well established.

The analysis of the power spectrum of J,, considered as a
time series, has given rise to the following result: energy
level fluctuations of chaotic quantum systems are character-
ized by 1/f noise, whereas those of quantum integrable sys-
tems show 1//2 noise [6,11], i.e.,

1
— for chaotic systems,

Wy
1

; for integrable systems.
k

Pay) (16)

Moreover, for some intermediate (neither integrable, nor
chaotic) Hamiltonians, a 1/f* noise with 1 <@ <2 has been
found [12,13]

Pawg) = —. (17)
Wy

IV. CALCULATIONS AND RESULTS

In this paper, we use RMT to model quantum chaos. It
plays a predominant role in the description of chaotic quan-
tum systems; in spite of a few counterexamples, it is the
accepted theory for describing the energy level fluctuations
of chaotic quantum systems in the universal regime [4,5].
Although there does not exist a general and widely accepted
proof of this empiric result, important efforts are going to
show that RMT and the semiclassical approximation give
rise to the same results in a wide range of scales [27].

Here, we deal with two classical random matrix en-
sembles (CRMEs): the Gaussian orthogonal ensemble
(GOE) and the Gaussian unitary ensemble (GUE) of
N-dimensional matrices. The former is applicable for time-
reversal invariant chaotic systems with rotational symmetry
or with broken rotational symmetry and integer spin; and the
latter is applicable for quantum chaotic systems without
time-reversal invariance. They describe the universal regime
of the spectral fluctuations for all known chaotic quantum
systems [28].

In order to calculate the gth-order correlation function de-
fined in Eq. (12), we perform a twofold average: first a mov-
ing average over the single spectrum (*), and afterwards an

ensemble average ¢ over different members of the same en-
semble

Cq(n) = <5m+n - 5m>m (18)

This double average greatly reduces the statistical fluctua-
tions of C,(n) (specially for high values of ¢), and thus al-
lows us to obtain significant results for a wide range of ¢
values. In practice, the ensemble average is performed with a
finite number M of realizations of N-dimensional spectra.
The moving average is carried out by summing over the first
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FIG. 1. Numerical values of C,(n) for GOE (open circles) and
GUE (open squares), compared to the best fit of Eq. (21) to the
calculated values (solid lines)

3N/4 levels of the spectrum. This makes it possible to in-
clude many different regions of the spectrum and obtain re-
liable statistical results. Therefore, Eq. (18) can be written as

3N/4

1 4
=—— Sprin— 6,
c,(n) Mw%mE:ll iin = O

9 n=1,2,....,N/4.

(19)

In this paper, the (double) numerical averages have been cal-
culated by using M=500 ensemble matrices of dimension
N=4096.

A. The second-order momentum

According to Egs. (7) and (16), C,(7) should behave loga-
rithmically for quantum chaotic systems. Using analytical
methods, Bohigas, Leboeuf, and Sanchez have calculated
this function for the three CRME [26], and their main results
are that
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TABLE I. Best fit values of the coefficients A, and B, (numeric)
compared to the predictions of Bohigas et al. (theory).

Ay B,

Theory Numeric Theory Numeric
GOE 0.2026 0.2013 (3) 0.2753 0.278 (1)
GUE 0.1013 0.1009 (1) 0.1794 0.1794 (1)

2Inn 2[y+In(2m) + 1 2

Cy(n) = + Ly+In(2m) ]+'[—3——+0(1/n2),
B B 4 3
nel, (20)

where y=0.577 216 is the Euler constant, and B8=1, 2 for
GOE and GUE, respectively.

As a preliminary test of our calculation, we try to repro-
duce their result. Figure 1 shows C,(n) for GOE and GUE
using a semilogarithmic scale. Indeed, the calculated points
fit very precisely to the law

Cz(n)zAzlnn+Bz, (21)

almost through the whole range of n values, i.e., for n
<N/4. As it can be seen in Table I, the values of A, and B,,
obtained by means of a least-squares fit, agree with the the-
oretical predictions of Eq. (20) with a precision higher than
1%.

B. gth-order momentum

Figure 2 shows the behavior of C,(n) in a wide interval of
g values. For the sake of clarity, the figure is divided in four
subpanels with different types of scales; this makes it pos-
sible to distinguish properly the main trend of the correlation
function through the whole ¢ interval studied in this work.
Upper panels display the values of the gth-order correlation
function for GOE while lower ones do for GUE. Using dif-
ferent symbols and a double logarithmic scale, left panels

T T T T T T T T T T
=3.0 = q=6.2 a]
g=4.o L] =06 ©
5rg=50 4 7 ol g=10 &
g=6.0 v =14 v
—_ g=7.0 ¢ g=1.8 ©
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v 25 4 =
(E) O 08¢ E
0 1 o4k 1 FIG. 2. Numerical behavior of C,(n) for GOE
¥ — (upper panels) and GUE (lower panels) calcu-
¢ 1 Sln N £ 8 87 e 1 2 3]n 5 58 7 lated using 500 matrices of dimension 4096 for
each ensemble. Left panels display the results for
T T T T T T T T T =
q=z31'8 = 08 L q=3,4,5, 6, and 7 using a log-log scale. Right
=4, ° X
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FIG. 3. Behavior of the coefficients A, and B, [defined in Eq.
(22)] for GOE (circles) and GUE (triangles). Their values are ob-
tained by a least-squares fit of Eq. (22) to the calculated values of
Cq(n). Solid lines represent a least-squares fit of A, and B, values to
a linear law in g¢.

show the behavior of C,(n) for 3<¢<7, while the right
panels display C,(n) vs Inn when 0.2<g<1.8. Solid lines
represent the result of a linear-square fit of the calculated
values to the law

C,(n)=(A,Inn+B,)", (22)

which is a generalization of Eq. (21). The agreement be-
tween the numerical values of Cq(n) and the continuous
curves is excellent except for very small values of n. In this
region, the discrepancies between the actual Cq(n) values
and the predictions of Eq. (22) seem to be larger for GOE
spectra. This departure from a logarithmic behavior was al-
ready known for the g=2 momentum. Actually, the result of
Bohigas et al. (20) includes corrections of order O(1/n?) that
become significant when 7 is small. These additional terms
of C,(n) are related to the fact that in RMT, the power spec-
trum of 9, is not an exact power law; there exist small but
clear deviations at high frequencies. Moreover, the devia-
tions of P(w) from an exact 1/f noise are larger for GOE
than for GUE spectra, and therefore, we can expect Eq. (22)
to be a better approximation for the latter. Strictly speaking,
these arguments are valid for C,(n) since we only have ana-
lytical results for this function and its relation to P(w). Nev-
ertheless, the results of Bohigas, Haq, and Pandey for the
three-point and the four-point correlation functions in RME
[29] suggest a similar behavior when ¢>2.

In order to fully characterize the correlation structure of
6, for chaotic quantum systems, we must set the shape of A4,
and B, inside of a g interval as large as possible. In this
work, we have been able to obtain their values for 1<g¢
=< 10. Beyond this interval, we can still use the same method
to obtain significant results, but larger dimensionalities and
number of members of the matrix ensemble are needed. The
values of A, (upper panel) and B, (lower panel) for GOE and
GUE are displayed in Fig. 3. It is clearly seen that both
functions increase linearly with ¢, and again the agreement
between the calculated points and the fit to a linear function
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is excellent. This allows us to conclude that Aq and Bq are
exact linear functions.

Collecting together these results, we can state the follow-
ing.

Conjecture. Let H be a Hamiltonian matrix pertaining to
the Gaussian orthogonal ensemble or to the Gaussian unitary
ensemble. The correlation structure of its spectrum, consid-
ered as a time series, is characterized by a gth-order correla-
tion function

C,n)=(A,Inn+B)", ¥V q=0,

where A, and B, are linear functions of the exponent g.

An important consequence of this conjecture is that the
scaling behavior of GOE and GUE spectra differs from a
power law C,(n)na. Therefore, the spectra of these en-
sembles, considered as time series, are not self-affine. Nev-
ertheless, this result could be considered as a particular case
of a more generic law

C,(n)=(A,Inn+B,)"a, (23)

where H, is a smooth function of g¢. In our case H,
=1/2 V g, a result that can be understood as a simple be-
havior, since all momenta can be characterized by means of a
single exponent H,=1/2 V g—something similar happens
for fractional Brownian motion, which is considered more
simple than multifractal processes [30].

V. COMPARISON WITH OTHER MODELS

As is well known, 1/f* noise is ubiquitous. Many physi-
cal systems and mathematical models with this property are
self-affine, i.e., their correlation function follows a power
law. However, our previous result raises the question
whether other systems (apart from CRME) have a logarith-
mic behavior. In order to obtain a partial answer to this ques-
tion, we calculate the correlation structure of time series

NI2

X(n)=2
k=1

l (21Tkn +é ) (24)
kcos N |

with Eq. (23). This algorithm, proposed by Greis [10], gen-
erates an exact 1/f noise; the unique source of randomness is
the set of phases ¢,. Different phase sequences might give
rise to different correlation structure. For this reason, we
have calculated Cq(n) for an uniformly distributed, noncor-
related sequence of phases in the interval [0,27), and a qua-
siperiodic sequence of phases

bi = 5o+ alsin(k) + sin(\k)](mod 27), (25)

which densely fills out the interval [0,247). In this case, dif-
ferent realizations are obtained by randomly selecting s, in
the same interval [10].

Figure 4 compares C,(n) for both types of time series. In
order to simplify the comparison, we only present the results
for ¢g=2 and g=4. Although C,(n) increases logarithmically
regardless of the phase sequence (as it correspond to exact
1/f noises), C,4(n) is an exact logarithmic function only for a
pure random phase sequence.
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FIG. 4. C,(n) values (lower panel) and C,(n) values (upper
panel) for time series generated with Eq. (24) and two different set
of phases: random noncorrelated sequences, uniformly distributed
in [0,27) (squares), and quasiperiodic sequences (25) (circles).

Therefore, we restrict our analysis to time series gener-
ated with Eq. (24) and random phase sequences. The
gth-order correlation function C,(n) is shown in Fig. 5; in
order to clarify its behavior for different values of g, we have

g=3.0 =
12+ g=4.0 - g
g=50 -
g=6.0 v
9 g=7.0 . i
e
OD'
c 6 1
’ ‘/M“"W‘_
O 1 1 1 1 1 1
0 1 2 3 4 5 6 7
Inn
6 L 4
g=02 =
g=06 o
g=1.0 -
g=1.4 v
€ 4 g=1.8 ° 1
o
Q
2

Inn

FIG. 5. Numerical behavior of Cq(n) for time series generated
with Eq. (24), calculated for selected values of g using 500 realiza-
tions of length 4096. The upper panel displays the results for g=3,
4,5, 6, and 7 using a log-log scale. The lower panel shows C,(n)
for g=0.2, 0.6, 1.0, 1.4, and 1.8 in a logarithmic scale.
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FIG. 6. Linear behavior of the coefficients A, and B, [defined in
Eq. (22)] for time series generated with Eq. (24). Their values are
obtained by a least-squares fit of Eq. (22) to the calculated values of
Cq(n). Solid lines represent a least-squares fit of A, and B, values to
a linear law in q.

divided this figure in two panels. Using a double logarithmic
scale, the upper panel displays the calculated values of the
gth-order correlation function for 3<¢g =7, while the lower
one shows Cq(n) versus Inn when 0.2<¢=<1.8. Again, the
continuous curves are the result of a least-squares fit to Eq.
(22). Beyond any doubt, these results are very similar to
those obtained for CRME. However, since we are now deal-
ing with an exact 1/f noise, the agreement between the cal-
culated points and the theoretical law is more accurate, even
at very low n values.

In order to complete the comparison with RMT, we have
calculated the coefficients A, and B,. Figure 6 proves that
they are linear functions of the order index g. Although the
slope is different for the energy level spectra of chaotic quan-
tum systems and for these time series (generated as an ap-
propriate linear combination of cosine functions), we can
clearly state that their statistical properties do coincide.

VI. SUMMARY AND CONCLUSSIONS

Using the formal analogy between energy level spectra
and time series, we have studied the correlation structure in
the spectra of some classical random matrix ensembles,
which can be considered as the paradigms of chaotic quan-
tum systems. The gth-order correlation function Cq(n) has
been calculated for several g values in the range 0 <g=<10.
The calculations are performed using a twofold average, first
over many sets of levels within the spectrum of a large di-
mensional matrix, and afterwards over a large number of
different members of the matrix ensemble. This procedure
ensures good accuracy for the gth-order correlation function
calculations.

Inspired by the linear behavior in In n of the second-order
correlation function C,(n), we have tried to see if the
gth-order correlation function exhibits a logarithmic behav-
ior of the type C,(n)=(A,In n+B,)"* where A, and B, are
linear functions of ¢. For all the numerical examples consid-
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ered, we have found that the gth-order correlation function of
the &, statistic for GOE and GUE random matrices exhibits
this kind of behavior very accurately. The agreement of this
function with the numerical data is excellent in all cases, for
small, large and intermediate g values in the whole 0<<gq
<10 range considered. Therefore, it seems reasonable to
conjecture the same behavior for all momenta with ¢ >0. We
call this behavior simple logarithmic behavior, since C,(n)
has the same functional structure as the second-order corre-
lation function, regardless of the value of g.

An interesting question is whether the simple logarithmic
behavior of the gth-order correlation function is a peculiarity
of the classical random matrix ensembles or may appear in
other systems as well. As a first step in the study of this
question, we have again made use of the analogy between
level spectra and time series. We know that fluctuations in
the spectra of chaotic quantum systems and random matrix
ensembles are characterized by 1/f noise. We also know that
1/f noise is very ubiquitous in nature: many physical sys-
tems and mathematical models have this kind of fluctuations.
But do they have simple logarithmic behavior?

We have obtained some answers to this question studying
the correlation structure of a set of time series generated as a
linear combination of cosine functions, as shown in Eq. (24).
These time series have an exact 1/f noise behavior indepen-
dent of the choice of phases ¢;. We have calculated C,(n)
using two different ways to generate ¢, and we found a
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simple logarithmic scaling behavior for a noncorrelated se-
quence of phases uniformly distributed in the interval
[0,27). Furthermore, in this case, the agreement of the cal-
culated gth-order correlation function with the ansatz Cq(n)
=(A,In n+Bq)q/2 is perfect.

Finally, we would like to point out that these results
clearly suggest a neat way to check whether random matrix
theory describes properly all the statistical properties of cha-
otic quantum systems. With some exceptions, like the com-
parison of the RMT predictions for the three-point and four-
point correlation functions with the nuclear data ensemble,
this test has been systematically carried out by many authors
using statistics associated to the second-order momentum.
However, higher-order correlation functions (Cq(n), qg>2)
are very sensitive to the details of the joint probability den-
sity characteristic of the system or ensemble. Therefore, they
may provide a very stringent test of the famous Bohigas-
Giannoni-Schmit conjecture about the fluctuation properties
of chaotic quantum systems.
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